INTRODUCTION TO MODERN C++

LECTURE 5

A
UNIVERSITE PARIS 1

PANTHEON SORBONNE

Rémi Géraud
February 25, 2016

Ecole Normale Supérieure de Paris

LECTURE 5
STRUCTS/CLASSES: MEMBERS, INHERITANCE,
AND THE RULE OF 3/0/5

A WORD OF CAUTION

We are now entering the world of classes.
We'll stay there for some time.

Then we'll leave for a better place.

TABLE OF CONTENTS

1. Structs and members

2. Public and Private Parts

3. Inheritance

4. Object-Oriented Programming

5. Constructors & Destructors

STRUCTS AND MEMBERS

STRUCTS

In last week’s lab, we encountered compound types such as
structs.

int main() {
struct Point2D {
double x; // First field
double vy; // Second field

I
Point2D v {4, 7};

std::cout << "v = ("
<< V.X
”n n
<< ",
<< V.y
< < ”n) ”n

<< std::endl;

STRUCTS AS SPECIAL-PURPOSE TYPES: FIELDS

Structs are very practical ways to create special-purpose types,
e.g.

- Mario (fields: position, score, etc.)
- Koopa (fields: health, level, etc.)
- Sky (fields: color, position, etc.)

or, closer to earth,

- Option (fields: price, volatility, quantity, etc.)
- Country (fields: population, GDP, name, etc.)

STRUCT METHODS

In fact, we can do more. Here's an example:

int main () {
struct Point2D {
double x, v; // Fields

double Norm2() { // Norm2 method
return x*x + y*y;
i 6
bis

Point2D v {10, 2};
Point2D w {3, 4};

std::cout << "||v|[|"2 = " << v.Norm2() << std::endl;
std::cout << "||w|["2 = " << w.Norm2() << std::endl;

STRUCT FIELDS AND METHODS: MEMBERS

General rule of thumbs:

- Fields = Properties
- Methods = Responsibilities

Example: struct Mario

- Fields: position, score, etc.

- Methods: move, jump, die, grow, etc.

PUBLIC AND PRIVATE PARTS

STRUCTS ARE PUBLIC BY DEFAULT

By default,

- All the fields of a struct can be read and modified,

- All the methods of a struct can be called,

by anyone (i.e. any part of the program).

Sometimes, you don't want that: IP, correctness, etc.

i

CLASSES ARE PRIVATE BY DEFAULT

We can use class instead of struct. By default,

- Only the class itself can read or modify its fields,
- Only the class itself can call its methods.

and no one else (unless explicitly specified)

Classes and structs are otherwise equivalent. But in practice, almost
everyone uses classes.

Here is a typical C++ class example:

class Square {
double x, vy, w, h; // Private
double area, perimeter; // Private

public: // Everything that follows is public

double getArea() { ... };
double getPerimeter() { ... };
double resize(double newW, double newH) { ... };

CLASSES AND HEADER FILES

For the sake of clarity, it is better to separate the class definition
from its implementation. To that end we use header files. Example:

// File: Point2D.h
class Point2D {
public:
double x, vy;
double Norm2();

b

// File: Point2D.cpp

double Point2D::Norm2() {
return XxX*X + y*xy;

}

This makes it easier to separate specification from implementation.
To use the class Point2D you must add #include "Point2D.h"” to
your program.

14

INHERITANCE

INHERITANCE: MAIN IDEA

There is not much difference between a square and a rectangle. Is
there a way to avoid coding the same things twice?

Yes: Inheritance.

INHERITANCE: COPYING EVERYTHING FROM YOUR PARENTS

class Rectangle {
public:
double x, vy, w, h;
double getArea();
i3

class Square : public Rectangle {
// All public fields are copied from Rectangle
// All public methods are copied from Rectangle
b

We say that Square is a “child” of Rectangle. Or that Rectangle
is a “parent” of Square.

INHERITANCE: PROTECTED MEMBERS

What about private fields and methods? Those don't get copied.
But we can share something within a family by using protected:

class Rectangle {
protected:
double x, vy, w, h;
public:
double getArea();
};

class Square : public Rectangle { };

Square will have access to x, y, w, h. Butsomeone who isn't
part of the family will not have access.

HIDING INHERITANCE

Inheritance can be embraced or denied:

class Shapel : public Rectangle { ... }; // Recognized
class Shape2 : protected Rectangle { ... }; // Family secret
class Shape3 : private Rectangle { ... }; // Unrecognized

By default, inheritance of classes is private.

19

OBJECT-ORIENTED PROGRAMMING

OBJECT-ORIENTED PROGRAMMING

OOP is a software design paradigm developed in the 1970’s.

Main ideas:

- Construct objects (= classes)

- Specify their properties (= fields), responsibilities (= methods),
and visibility (= private/public)
- Use dependencies (= inheritance) to avoid rewriting code

Main goals:

- Separation of concerns (= team work)

- Encapsulation (= how | work is not your business).

21

EXAMPLE: PLATFORM GAME CLASS DIAGRAM

| GraphicalObject |

Y Y

| Movable | Sky

h 4 h 4
| Living | | Powerlp |

h A

Enermy

22

OOP: THE GOOD, THE BAD, AND THE UGLY

- The Good: Fast development, easy teamwork, easy to learn
- The Bad: multithreading, resource management
- The Ugly: ...

23

EXAMPLE: VIOLATING THE LISKOV SUBSTITUTION PRINCIPLE

- Create a class Ellipse. Create a class Circle.

- Acircle “is an” ellipse, therefore Circle inherits from Ellipse.
- Assume that Ellipse has a stretchX method.

- This method is inherited by Circle.

- But if we use stretchX onaCircle, itis no longer a circle...

Bottom line:

An O0O-model of a circle should not be
a sort of 00-model of an ellipse

24

CONSTRUCTORS & DESTRUCTORS

INITIALISATION: CONSTRUCTORS

If we want a class to be initialised in some way, we can use a
special method called a constructor.

class Point2D {

double x, y;
public:
Point2D(double newX, double newY); // Constructor
¥
Point2D::Point2D (double newX, double newY) {
X = newxX;
y = newy;

}

int main() {
Point2D myPoint (27, 35);

26

INITIALISATION: CONSTRUCTORS

You can have several constructors, as long as they don't overlap.
Most useful ones are:

- Default constructor;
- Copy constructor — necessary for complicated classes;
- Move constructor — if you want to move without copying.

27

CLEANING-UP: DESTRUCTORS

A class should clean after itself. The cleaning-up code is taken care
of in a destructor:

class MyStorage {

public:
MyStorage(...); // Constructor: Opens a file
~MyStorage(); // Destructor: Closes the file

b

Important: Any resources acquired during creation should be freed
upon destruction.

28

THE RULE OF 3(OR 0 OR5)

You should use only one of these combinations:

0 No destructor, copy or move constructor, no assignment
operator,

3 Destructor, copy constructor and copy assignment operator;
3 Destructor, move constructor and move assignment operator;

5 Destructor, copy and move constructors, copy and move
assignment operators.

Remember:

Respect the rule of 3 (or 0 or 5).

If you don't, your program might behave unexpectedly.

29

QUESTIONS?

LAB SESSION
CONST, VIRTUAL, AND MOVE SEMANTICS

	Structs and members
	Public and Private Parts
	Inheritance
	Object-Oriented Programming
	Constructors & Destructors

