INTRODUCTION TO MODERN C++

LECTURE 2

A
UNIVERSITE PARIS 1

PANTHEON SORBONNE

Rémi Géraud
February 4, 2016

Ecole Normale Supérieure de Paris

REMARK ON SETUP

If you had trouble installing VirtualBox or Ubuntu you can:

- Gotohttp://cpp.sh to test code (tick C++14 and all warnings)
- Ask for help by sending an mail
- Get a pre-installed VirtualBox image on a USB stick

LECTURE 2
TYPES, STATEMENTS, ARITHMETIC

TABLE OF CONTENTS

1. Types, Built-ins, Representation
2. Integer and float arithmetic

3. Boolean and binary operations
4. More types, higher-order types

5. Special functions

TYPES, BUILT-INS, REPRESENTATION

WHAT IS A TYPE?

WHAT IS A TYPE?

WHAT IS A TYPE?

Atype is a label that we attach to data.

Examples:

- 27 is a number, more precisely a positive integer

- Ais a letter, more precisely a capital letter

WHAT ARE TYPES USEFUL FOR? |

Types tell us how to deal with operations.

Examples:

« 27+ 27
A+ A
- cabbage + carrot, A+ 3, A* A

Note: In C++, you can’t mix different types.

This is called type safety.

Cabbage with cabbage, carrots with carrots.

WHAT ARE TYPES USEFUL FOR? I

Types tell us how to interpret data.

Examples:

- 1000001 read as a number is 65
- 1000001 read as a letter is A
- 1000001 read as a carrot is ?

BUILT-IN TYPES

C++ comes equipped with several default types known as built-ins:

- int for “integer”: 45, 8088, -78

- bool for “Boolean”: true, false

- float for “floating-point number”: 314159, -24.3
- char for “character” ‘A", ‘\n’, ‘0’

- void for the empty type (no possible value).

That is the complete list.

i

DECLARATIONS AND STATIC TYPING

C++ is statically typed, which means that:

- You must explicitly provide the type of everything (declaration)
- You can't change it after.

Example declaration: int myinteger;

Note: identifiers must start with a letter, and contain only letters,
digits, and underscores

myl, 1dt, my-variable, HelloWorld, lol_123, float

INTEGER AND FLOAT ARITHMETIC

INTEGER AND FLOAT ASSIGNMENT

Let's start with numbers. First, you must declare variables:

int myinteger;
float myfloat;
int a, b, ¢, d, e, f;

Assignment is done with the equal sign (statement):
myinteger = 443;

myfloat 23.4;
myfloat lels;

Reminder: You can use this to check
std::cout <« myinteger <« std::endl;

14

BASIC OPERATIONS |

Basic operations on int or float:

- Addition with +

- Subtraction with -

- Multiplication with *

- Division with / Caution!

USS Yorktown (DDG-48/CG-48) — death by division

BASIC OPERATIONS I

What does this code do?
#tinclude <iostream>

int main() {
int myint;
std::cout << "Enter a number and press Enter: ";
std::cin >> myint;
std::cout << myint << std::endl
<< myint*2 << std::endl
<< myint*myint << std::endl;

Test it with some values: 27, -10, 16777215, 16777216

BASIC OPERATIONS 111

The previous example illustrates the following fundamental fact:

int # Z,N
float #R

We will see more about that in a subsequent lecture.

BASIC OPERATIONS IV

Just a remark: What happens if | do this?

int x = 123.999;

19

BASIC OPERATIONS IV

Just a remark: What happens if | do this?
int x = 123.999;

Answer: | will get 123 and maybe a warning.

This is called implicit conversion and it's bad practice.
Try int x = 1e89; and see what happens.

Take away: Respect type safety

If you should convert, do it explicitly

19

BOOLEAN AND BINARY OPERATIONS

BOOLEAN ALGEBRA |

A Boolean algebra encodes classical propositional logic:
AND, OR, NOT, XOR,

For instance, let P be any proposition, then:

- NOT (NOT P) =P
- P AND (NOT P) = False
- POR(NOT P) = True

21

BOOLEAN ALGEBRA II

The Boolean operations are expressed in C++ with the following
symbols:

- AND with &&
- OR with ||
« NOT with!

Example: “NOT (P AND Q)" is written in C++ as follows:
(P 6§ Q)

Other example: ((x == 4) || (x < 1))

22

BOOLEAN ALGEBRA III

What does this code do?

#include <iostream>

int main() {
int age;
bool adult;
std::cout << "How old are you? ";
std::cin >> age;
adult = (age >= 18);

if (ladult) {
std::cout << "Try again in
<< 18 - age
<< " years!”
<< std::endl;

”

23

BINARY OPERATIONS

The binary operations act like the Boolean operations, but bitwise.

Let:
X = 65 = 1000001
y = 42 = 0101010
Then
X &§y = 00000000 = O (binary AND)
- x |y = 01101011 = 107 (binary OR)
X Ay = 01101011 = 107 (binary XOR)

24

A WORD OF CAUTION

Do not be confused!

- = (assignment) vs. == (equality test)
- & (binary AND) vs. && (boolean AND)
- | (binary OR) vs. || (boolean OR)

The first one in particular is deadly.

25

MORE TYPES, HIGHER-ORDER TYPES

MORE TYPES, HIGHER-ORDER TYPES

Not going into too many details now, we will meet other types:

- Standard library types, e.g. std::string
- Dependent types, e.g. std::vector<int>
- Higher-order types, e.g. types of functions

Remark : Type theory is a very active research area.

27

SPECIAL FUNCTIONS

SPECIAL FUNCTIONS

Addition and multiplications are nice, but what about cos(w/27)?
#include <cmath>

Then you can just use

float myvalue = cos(M_PI/27);

More interesting computations in the homework (Black-Scholes
option pricing).

29

BRAIN TEASER: UNDEFINED BEHAVIOUR

Question: What happens with this code and why?
#include <iostream>
int main() {

int myint;

float myfloat;

std::cout << myint << std::endl
<< myfloat << std::endl;

30

QUESTIONS?

LAB SESSION
MATH, ARRAYS, VECTORS, AND THE QUAKE 3 TRICK

	Types, Built-ins, Representation
	Integer and float arithmetic
	Boolean and binary operations
	More types, higher-order types
	Special functions

