
introduction to modern c++
Lecture 2

Rémi Géraud
February 4, 2016

École Normale Supérieure de Paris

remark on setup

If you had trouble installing VirtualBox or Ubuntu you can:

• Go to http://cpp.sh to test code (tick C++14 and all warnings)
• Ask for help by sending an mail
• Get a pre-installed VirtualBox image on a USB stick

2

Lecture 2
Types, Statements, Arithmetic

3

table of contents

1. Types, Built-ins, Representation

2. Integer and float arithmetic

3. Boolean and binary operations

4. More types, higher-order types

5. Special functions

4

types, built-ins, representation

what is a type?

6

what is a type?

A 27 ⊗

7

what is a type?

A type is a label that we attach to data.

Examples:

• 27 is a number, more precisely a positive integer
• A is a letter, more precisely a capital letter

8

what are types useful for? i

Types tell us how to deal with operations.

Examples:

• 27+ 27
• A + A
• cabbage + carrot, A + 3, A * A

Note: In C++, you can’t mix different types.

This is called type safety.
Cabbage with cabbage, carrots with carrots.

9

what are types useful for? ii

Types tell us how to interpret data.

Examples:

• 1000001 read as a number is 65
• 1000001 read as a letter is A
• 1000001 read as a carrot is ?

10

built-in types

C++ comes equipped with several default types known as built-ins:

• int for “ integer”: 45, 8088, -78
• bool for “Boolean”: true, false
• float for “floating-point number”: 3.14159, -24.3
• char for “character”: ‘A’, ‘\n’, ‘0’
• void for the empty type (no possible value).

That is the complete list.

11

declarations and static typing

C++ is statically typed, which means that:

• You must explicitly provide the type of everything (declaration)
• You can’t change it after.

Example declaration: int myinteger;

Note: identifiers must start with a letter, and contain only letters,
digits, and underscores

my1, 1dt, my-variable, HelloWorld, lol_123, float

12

integer and float arithmetic

integer and float assignment

Let’s start with numbers. First, you must declare variables:

int myinteger;
float myfloat;
int a, b, c, d, e, f;

Assignment is done with the equal sign (statement):

myinteger = 443;
myfloat = 23.4;
myfloat = 1e14;

Reminder: You can use this to check
std::cout ≪ myinteger ≪ std::endl;

14

basic operations i

Basic operations on int or float:

• Addition with +
• Subtraction with -
• Multiplication with *
• Division with / Caution!

15

USS Yorktown (DDG-48/CG-48) — death by division

16

basic operations ii

What does this code do?

#include <iostream>

int main() {
int myint;
std::cout << ”Enter a number and press Enter: ”;
std::cin >> myint;
std::cout << myint << std::endl

<< myint*2 << std::endl
<< myint*myint << std::endl;

}

Test it with some values: 27, -10, 16777215, 16777216

17

basic operations iii

The previous example illustrates the following fundamental fact:

int ̸= Z,N
float ̸= R

We will see more about that in a subsequent lecture.

18

basic operations iv

Just a remark: What happens if I do this?

int x = 123.999;

Answer: I will get 123 and maybe a warning.

This is called implicit conversion and it’s bad practice.
Try int x = 1e89; and see what happens.

Take away: Respect type safety
If you should convert, do it explicitly

19

basic operations iv

Just a remark: What happens if I do this?

int x = 123.999;

Answer: I will get 123 and maybe a warning.

This is called implicit conversion and it’s bad practice.
Try int x = 1e89; and see what happens.

Take away: Respect type safety
If you should convert, do it explicitly

19

boolean and binary operations

boolean algebra i

A Boolean algebra encodes classical propositional logic:

AND, OR, NOT, XOR, ...

For instance, let P be any proposition, then:

• NOT (NOT P) = P
• P AND (NOT P) = False
• P OR (NOT P) = True

21

boolean algebra ii

The Boolean operations are expressed in C++ with the following
symbols:

• AND with &&
• OR with ||
• NOT with !

Example: “NOT (P AND Q)” is written in C++ as follows:

!(P && Q)

Other example: ((x == 4) || (x < 1))

22

boolean algebra iii

What does this code do?

#include <iostream>

int main() {
int age;
bool adult;
std::cout << ”How old are you? ”;
std::cin >> age;
adult = (age >= 18);

if (!adult) {
std::cout << ”Try again in ”

<< 18 - age
<< ” years!”
<< std::endl;

}
}

23

binary operations

The binary operations act like the Boolean operations, but bitwise.
Let:

x = 65 = 1000001
y = 42 = 0101010

Then

• x & y = 00000000 = 0 (binary AND)
• x | y = 01101011 = 107 (binary OR)
• x ∧ y = 01101011 = 107 (binary XOR)

24

a word of caution

Do not be confused!

• = (assignment) vs. == (equality test)
• & (binary AND) vs. && (boolean AND)
• | (binary OR) vs. || (boolean OR)

The first one in particular is deadly.

25

more types, higher-order types

more types, higher-order types

Not going into too many details now, we will meet other types:

• Standard library types, e.g. std::string
• Dependent types, e.g. std::vector<int>
• Higher-order types, e.g. types of functions

Remark : Type theory is a very active research area.

27

special functions

special functions

Addition and multiplications are nice, but what about cos(π/27)?

#include <cmath>

Then you can just use

float myvalue = cos(M_PI/27);

More interesting computations in the homework (Black-Scholes
option pricing).

29

brain teaser: undefined behaviour

Question: What happens with this code and why?

#include <iostream>

int main() {
int myint;
float myfloat;

std::cout << myint << std::endl
<< myfloat << std::endl;

}

30

Questions?

31

Lab Session
Math, arrays, vectors, and the Quake 3 trick

32

	Types, Built-ins, Representation
	Integer and float arithmetic
	Boolean and binary operations
	More types, higher-order types
	Special functions

