Introduction to Modern C+ +

Lab Session 5
Const, Virtual, and Move Semantics

1 Introduction

We wish to construct some model of the (economic) world. To that end, we need a representation of countries:
We will create a class called Country that contains relevant information, for instance at least: Name of country
(in English), Area (in km?), Population, GDP (nominal, in USD).

Task 1. Create a header file called country.h and containing only the signature of your class Country. Your
class should at least have the following members:

e Public fields: name, area, population, gdp

e Public methods: Country() (default constructor)

Hint: You may want to include <string> to use std: :string.

Task 2. Create a file main.cpp that contains these lines:

#include <iostream>
#include "country.h”

int main() {
Country Germany (); // Create a country 'Germany'

Germany.name = "Germany";
Germany.area = 357168;

// ... use Wikipedia to fill the rest

std::cout << Germany.name

<< n has n
<< Germany.population
<< " inhabitants."” << std::endl;

}

Test your code. Create similarly a new Country instance called Lesotho, and yet another one called Colombia.
Use Wikipedia to input correct information about these countries.

Task 3. Add a method double getDensity() to your Country class, that returns the population density of the

country (i.e. population divided by area). Which of your three countries is the most densely populated? The
least?

2 Const-safety: The const keyword

Now that we have countries, we can think about interesting things to do with them. Here is a very silly

demographic prediction (probably not true): In 2020, each country’s population will be multiplied by 110%.
This can be implemented by the following code:

double getPopulationIn2020(Country& myCountry) {
return myCountry.population * 1.10;

}

Task 4. Test that this function works on Germany. Why do we use Country& and what does it mean? What
happens if we use the following code?

double getPopulationIn2020(Country& myCountry) {
myCountry.name = "Catland”;
return myCountry.population * 1.10;

}

The dilemma is as follows: Either we copy everything (poor performance, high memory usage) and our objects
cannot be directly modified; Or we pass by reference (high performance, low memory usage), but then it seems
that our objects can be modified. The const keyword solves this issue:

Task 5. Check that the following code does not compile correctly. Describe the effect of the const keyword.

double getPopulationIn2020(const Country& myCountry) {
myCountry.name = "Catland”;
return myCountry.population * 1.10;

}

3 Dynamic dispatch: The virtual keyword

Let’s now focus on humans.

Task 6. Create a class Person that has only one method: sayHello() of type void. Implement the function
Person: :sayHello().

Task 7. Create a class GermanPerson that inherits from Person. Implement GermanPerson::sayHello().
Create also a LesothoPerson and a ColombiaPerson. Implement their respective LesothoPerson: :sayHello()
and ColombiaPerson: :sayHello(). Test it with the following code:

int main() {
GermanPerson Hans;
LesothoPerson Nombeko;
ColombiaPerson Raul;

Hans.sayHello ();
Nombeko.sayHello ();
Raul.sayHello ();

3

Hint: In Sotho (the language of Lesotho), “hello” is said “dumela”. In Colombian Spanish, you can choose
between iHola!, Buenas, Buenos dias, iQuibo!, ¢Qué mas?, {Cémo vas?, ¢Como van las cosas?, {Qué cuentas?,
¢Qué has hecho?, Cémo me le va?, {Bien o qué?, etc. etc.

Task 8. We now wish to have a generic function greet that takes a person as input and makes that person say
hello:

void greet(Person& human) {
human.sayHello ();
3

What does Person& mean? Try to call this function with a GermanPerson: What happens?

Task 8. To solve this issue, we need to specify that sayHello is re-defined by child classes — otherwise, the
mother class will always prevail. This is done by using the virtual keyword (only in the class definition):

class Person {
public:
virtual void sayHello();

e Task 9. How to use const Person& human instead of Person& human? Hint: To specify that a function is const
you must add the const keyword after its signature.

4 e Move Semantics

Important remark: To deal with this section you must use a compiler compatible with C++11 (e.g. g++ with the
--std=c++11 compiler option).

Consider the following problem: We have an object BigObject1 and we want to move it to BigObject2. After the
move operation, BigObject2 should have all that was in BigObject1. In this particular scenario, we don’t care
about BigObject1 anymore.

Traditionally, we could (1) copy all the contents of BigObject1 into BigObject?2, then (2) erase information from
BigObjectl.

C++11 offers another way to achieve this, called move semantics. “Moving” simply transfers state (or ownership)
to another object.

#include <iostream> // std::cout, std::endl
#include <algorithm> // std::move
#include <list> // std::list

class ListHolder {
public:
std::list<std::string> m_tokens;

// Traditional: Copy the list

void setTokens(const std::list<std::string>& toks) {
std::cout << "Using *copy* semantics” << std::endl;
m_tokens = toks;

}

// Move semantics: Just take ownership

void setTokens(std::list<std::string>&& toks) {
std::cout << "Using *move* semantics” << std::endl;
m_tokens = std::move(toks);

int main() {
// Create a list
std::list<std::string> tokens;

tokens.push_back ("there");
tokens.push_back("is");
tokens.push_back("a-town");
tokens.push_back("in-new-orleans");

// Create a ListHolder
ListHolder p;

// Now, move the strings to the ListHolder
p.setTokens(std::move(tokens));

// Copy instead
// p.setTokens(tokens);

// Print the first element
std::cout << p.m_tokens.front() << std::endl;

// Verify that the old list is now empty
std::cout << tokens.size() << std::endl;

3

Explain: Why is moving better than copying? What are the difference between copy and move semantics? Are
we violating the Rule of 3/0/5?

	Introduction
	Const-safety: The const keyword
	Dynamic dispatch: The virtual keyword
	red Move Semantics

